If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2=891
We move all terms to the left:
p^2-(891)=0
a = 1; b = 0; c = -891;
Δ = b2-4ac
Δ = 02-4·1·(-891)
Δ = 3564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3564}=\sqrt{324*11}=\sqrt{324}*\sqrt{11}=18\sqrt{11}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{11}}{2*1}=\frac{0-18\sqrt{11}}{2} =-\frac{18\sqrt{11}}{2} =-9\sqrt{11} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{11}}{2*1}=\frac{0+18\sqrt{11}}{2} =\frac{18\sqrt{11}}{2} =9\sqrt{11} $
| 9m-6=27 | | Y=2(0.6x) | | 4(n+3)=6n+8+2 | | 15.32+c=29 | | 4(3-1)=-6+2(6x+1) | | K+5=3k-k+1 | | 2(5x+10)-2x=28 | | K-+5=3k-k+1 | | 15x=11=4-3x | | 44=x^2-7x | | x+19=58 | | 100+80+98+(5x-18)=360 | | 5(s+1)=5 | | 5x+3(x+4)=27 | | s/15+19=19 | | v/5+6=12 | | 13n=455 | | 9y+2y=110 | | d/4=6=15 | | f/5=3=11 | | 3^2x=27^x-12 | | 4x(1+9)=(4x)+(4x) | | 72/x-3=5 | | -75=-7.5(x+9) | | (4x+35)+(8x-9)=360 | | 7=-5+4y | | 12=x/3-8 | | 9x^2+40=0 | | 8(x-4)=5x-15 | | 0.5x+7=4x-8 | | 2x+2x+52=180 | | 0.5x+7=4(X-2) |